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LARGE DEVIATION PROBABILITIES FOR
CERTAIN DEPENDENT PROCESSES

, , by
- Kesar Singh

1. INTRODUCTION

This work is a contribution towards relaxing independence in the theory

of LDP. Section 2 of this paper contains a Chernoff's theorem type result

for linear processes under the absolute summability condition of the coeffi-
cients. Sections 3 and 4 prove a kind of limit theorem for various statistics

based on m-dependent processes. The relevance of the later limit theorems is

et Y g B

explained below.

Let {ﬁn} be a stochastic sequence intending to estimate the real para-

meter U. Consider the root of the equation
i - = - >
: 22 - o(ely, ) P(lu-u| > ©)

where € 1is gome positive number. If there is a sequence vYy(n) of positive

numbers s.t.

Y2 /Y(n)

2
1im inf 1lim :Lnfn_m Yn,e/Y(n) l=1im SUP L0 lim SUP n,€

e+0
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then vy(n) is called AEV (asymptotic effective variance) of W, (see

Bahadur (1960)). If for all positive sequences €€ > 0,

(1.1) o™ 1og B(lu-ul > ) = ~(*/2v) 1 +0_+0_ )

e+0 0e = 0 and 11mn+m On,e = 0 for all € sufficiently

small, then <Y/n is an AEV of un and it is unique in the sense that for

:;J where vy > 0, 1lim

any other sequence Y'(n) with the same property, 11mn+m Y/a Y'(n) = 1.

An estimate like (1.1) can be interpreted in testing of hypothesis

problems as follows. Let the testing problem be 6 = 90 vs. 0> eo where
0 1s some real parameter of a statistical family. Let the test statistic
be Tn - D(Go), large values of the statistic being significant. The level
attained is 1 - Qn(Tn - D(GO)) where Qn is the d.f. of Tn - n(eo).
under 60.

Assume that, under 60,

ot log P(T - D(8,)) > ¢ ) = -(62/2Y0) d+o0_+0 ) i

where Yo > 0, € ¢, and Oe and 0n ¢ 8re as in (1.1). Further, let

Tn + D(0) a.s. [6] with D(8) s.t. D(6) > D(Go) for 6 > 60 and

D(8) ~» n(eo) as 06 = 00. Then, under 6 > 00,

< loelx Mg a

nb log(1 - q (T, - D(8)) = ~[D(8) - D(8IZ (L + 1y + 1 /2Y,

n»oo

where 11m6~*60 rg = 0 and lim rn’e =0 a.s. [0] for all 6 suffi-

ciently close to 60. In a sense, this means that performance of a test
based on Tn - D(Oo) is proportional to (D(6) - D(Bo))2 and inversely
proportional to Yo locally. A similar interpretation holds for two sided
tests as well. In Sections 3 and 4 we establish bounds like (1.1) for

various statistics based on m-dependent processes.

o ™ VY
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2. SAMPLE MEAN OF LINEAR PROCESSES

We derive a Chernoff's theorem type LDP result for linear processes

using the following general theorem. For a r.v. X, let sup(X) =

inf{x: P(X > x) = 0}.

Theorem 1. Let {T“} be a sequence of statistics having the repre-
sentation ITn - Zi-l,n Yil <R where {Yi} is a sequence of 1.1.d.

r.v.'s having mean zero and Rh is another sequence of statistics. For
a >0, let

h(n,®) = inf{x > 0 s.t. E exp(xR ) > exp(an) }

= n if Rn is degenerate at zero .

If for some o finite, limn*w h(n,a) = =, then

-1
(2.1) 1im _ n"" log P(T > nd) inft>o{-td + log E exp(tYl)}

for d > 0, provided one of the following holds: A, 4 $ sup(Yl).
A,. P(Y1 - sup(Yl)) = 0,

Proof. It follows from the proof of Lemma 3.3 of Bahadur (1969) that
the function 8 = 1nft39 E exp(-tx + tYl) is continuous on (O, sup(Yl)).

On (sup(Yl), ®), gy = 0. Further, if A2 holds, it can be shown that 8y

is continuous on (0,®). If By is continuous at d and limn*w h(n,q) == ,
it follows that

(2.2) lin ,, 0"" log B(f_>d + 4a/h(n,a)) = log g, .
Furthermore, some elementary inequalities and the definition of h(n,a) imply
(2.3) |p(T, > nd) - P(Y, > d ¢ 4a/h(n,a))| < P(R, > 4na/h(n,a))

< exp(~20m)E exp(h(n,a) RhIZ) < exp(-on) .

Since the function h(n,a) 1s nondecreasing in o for every fixed n,

o can be chosen to be arbitrarily large; hence (2.2) and (2.3) yield (2.1).




We state the LDP result for linear processes as

Corollary 2.1. Let {zi} be a double sequence of 1.i.d. r.v.'s with

mean zero and E exp(tzo) < » for all real t. Let the process {xi} be

defined as X, = Zj-o,oo ay 2y 4 where Zj_o’,, ,3_1, <w and z = Zj-o.m

aj $ 0. Then

(2.4) lin nl log P(in > d) = 1inf, ol-td + 1og(E exp(tzZ,))}

*
for 4@ >0 provided one of the following holds: (Al) d ¥ sup(zzo),
*
(Az) P(zZO = sup(zzo)) = 0,
Proof. Let us define X = 23-0,1-1 8y 2, 6y " Zi_a’b a,

where a,b are nonnegative integers and b(> a) can be +», Let

and

zy = 1+ supiz.l zj-i,“’ Iajl ’
so that z, >0 and lta,bl/zo <1 forall 1 <a<b <o,

Limi,n %11 = ben,n 0,01 21 = Lpe1,n 24 - a4, 00 240
Therefore it follows that

Z

R Z1-1,:x|tn-1+1,m z,l + Zi-o,wlti-o-l,n-f-i 1l -

Applying the fact that Lp-norms are nondecreasing in p > 1,
(2.5) log(E exp(tR)) = log(E exp(tz,(R /2,))) < [zi-l,n Itn-i-’-l w|/zo
+ Lia0,0 1t141, 0011 /201 108 (8 expltzg|zy])

If ):1_0 o Iail < o  both the terms in the [ ] bracket above are o(n), so
1]
that

b
E exp(tR ) < (E(exp(zgt 12,1 "
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where n/bn + © ag n+°, This implies in this case that

h(n,1) > inf{x s.t. E exp(z x IZO|) z.exp(n/bn)}

8™ s A s o

which converges to <« as n-®; thus this corollary follows from Theorem 1.[]

It may not be out of place to mention that Chanda (1972) also estab-

lished a LDP result for linear processes assuming that a, << pi for some

p € (0,1) and that the distribution of Z0 satisfies Cramér's condition.
*

We give below a counterexample to show that if none of the conditions (Al)

and (A;) hold then (2.4) may be false.

A Counterexample. Let 0 <d = sup(zo) <o 0 < P(Zo =d) <1 and

a, = 2-1-1 for 1 > 0. Then =z =

1 = 1 and

zi-o,e° ay

s Wt i bl A AT

P(in >d) = P(z; = d for all integers i <n) =0,

-

whereas

Sl

P(Z >d) =P(z, =d forall 1<1i<n)=(R(z;=d)";

. 1

- i
§ so that inftzp{-td + log E exp(tzo)} = log P(Z0 = sup(zo)) > o {
H
i
: 3. LINEAR STATISTICS BASED ON m-DEPENDENT PROCESSES
Hereafter {Yi} denotes a sequence of m-dependent r.v.'s with mean O, ;
]
ci's are positive constants. € denotes a sequence with the property
limn__’m €, = €. 0e and on,e are remainders with the properties
| lime*o 0e = (0 and limn*m on,e = 0 for all € sufficiently small. For
¢ - convenience, let us say that a process R(n,e) 1is (x) 1f for some 61,62
. positive
- 148, 2-8,
T P(|R(n,e)| > ¢ ) < ¢, exp(-¢ n(l + o, + on,e))

¢
g
>
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for all positive ¢, sufficiently small. If a statistic Tn has the decom-

position T = Tn,e + Rh,e; Rn,e is (*) and Tn,e has the LDP bound

-1 2
n  log P('l‘n > en) (72 + Oe + On’s) .

» €

then so does Tn'

Theorem 2. Let v = V(Yl) + 2 z cov(Yl, ) >0 and H(t) =

4=1,m-1 Y141

E exp(tYi) < o for all |t| <a > 0. Then

-1 = 2
n = log P(Yn > en) -(e7/2v)(1 + Oe + On’ 8) .

Proof. W.l.g. we assume v=1l. Let € be small enough s.t. " 5-1/2

/2]

> m.

Taking p = [8-1 and k = [n/(pim)], we break the sum zi-l n Y1 as
]

follows

Limin Yo = Limx Gy + 0 + 5y

We

where Ei = Zj_l’p Y(p-lm)(i-l)+j and n, = Zj-l,m Y(p-fm)(i-l)+p+j'

-1 -1

shall see first that n Zi-l,k ny and n Ek+1 are (*). It follows
by repeated application of Holder's inequality that E exp(a|n1|/m)

< E exp(a |Y1|) < «; therefore E exp(t-:nl) <1+ czez for all positive

€ in a neighborhood of zero. Consequently

9/8) L exp(-2 ¢ ne7/")(l! exp(e:“’/8 nl))k

P(Zi-l,k Ny 22c,ne 2

e5/lo |3 n 7/4

<exp-2 ¢y ne’ Y1 + e, /% < exp(-2 ¢, ne’/b 4 ¢, kY

7/4)

< eatp(--c2 ne

for all € small. A similar bound 1is established for —X je1 .k Vg tO
»

-1
conclude that n Zi-l,k ni is (*). Turning to €410 Ve note that




Ry

9/8

9/

8
P([€gq | 2me™) <2y ip Y] 207

15/ /4

8n) E exp(€3

IA

exp(-€ zial’pm |Y1|)

exp(-€15/8n) E exp(€3/4([€-1/2 15/811 (1 + o))

1A

1+m [v,]) = exp(-e

-1/2

if € 1s small enough s.t. €3/4([e ] +m) <a. Thus it only remains

to be seen that
_ 2
P(51=1,k £ 2ne) = exp(-ne” (1 + 0 + 0 )/2) .

Let us write P(f, ;. & 2me) =P(f,_; & >ka) where
14 ’
& - g, 174 U4 ¢ e e 4 oet/?

n 0 }). Let us define
*
H (8) = E exp(s Ei) and

> a = (n/k) €

v(s) = (H*(s))-l Iw x exp(sx) dP(Ei <x) .

-00

1/6/4 , to which

*
H (8) and Vv(8) are well defined in the region |s| <ace
we confine the rest of the estimation. Applying Holder's inequality and

the moment inequality given as Lemma 1.9 of Ibragimov (1962), we have

[8%e) - 1 - 6? BED?r2] < 8 B([g]1? expls]E] 1)) /6

< o°1elg] 1% & expi2s €4 Y, v, D126

3

1/2 s

5_33[E|£i|6 E exp(2s /% g, D176 < e

3

1/4/4. Also, it is easily seen that E(Ei)z =

B2 E:1/4

in the region |s| Lac¢

1/2

*
1+0(’'%). Thus, |H (8) -1 - 32/2| Le, . By similar expan-

sions, one finds that

(3.1) [v(s) ~ s8] Legs 61/4 .
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That the function V(s) 1is continuous on (0, a e;/4/4] and is right
continuous at zero (W0) = 0) follows from Dominated Convergence Theorem.
Utilizing these facts, (3.1) and Intermediate Value Theorem, we conclude

that the equation v(bn) =a, has solution for all n large enough and
4
that any solution has to satisfy bn =a + O(an 61/ ).

Now, define the d.f. G(-, bn) by
dG(x,b ) = (H (b)) exp(b x) dP(E < x)
>“n n n E;1----

and let cz(bn) and r(bn) be its variance and the third moment. If

Gn(', bn) denotes the convolution of n copies of G(-, bn), then

' - * k _
(3.2) P(zi=1,k g 2ka) j:; (B (b ))" exp(-b_ x) dG (x, b))
n

- JO A(b ) exp(-D(b )2) d6G_(0(b ) 2, 4 kv(b ), b )

* k _ 1/2
where A(bn) (H (bn)) exp(-bn k an) and D(bn) = O(b“) bn k Some
easy expansions also show that 02(bn) =1+ O(bn)’ A(bn) = exp(—k(bilz

+ O(b:/z))), D(b ) = kl/z(bn + O(bi)) and r(b) = 0(1). The Barry-

Essen theorem and these estimates imply

/

1/2 -1/2
sup,ep (G (0B 2 + kv ), b) - ¥z)| Leg ¥

Now we are ready to estimate the desired probability. The r.h.s. of (3.2)

equals

A(bn) J: exp(-D(bn)z) dod(z) + A(bn) I: exp(-D(bn)z) d(Gn(c(bn)kllzz)

+la, b)-0(z)) = A ) exp((D(b ))?/2)[1-4(d(b )] + A(b)) 0k
(using the integration by parts)
= exp(-nez(l +0 + On’e)/2) >
substituting the estimates of A(bn), D(bn) and bn‘

8




Theorem 2 generalizes very easily to the case of linear processes. In
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fact, this extension only needs the assumption that the original r.v.'s have

m.g.f. in a neighborhood of zero. Using the bound (2.5) it is seen that o

paEOE A A A

Rn is (»).

We now state a uniform version of Theorem 2. We need to recall this
4 result in the next section while dealing with multivariate Kolmogorov-
< Smirnov statistics.

Theorem 3. Let fu, HE€ A be a family of measurable functions defined

on real line. Let us assume SUP e A lfu(Yi)l f_f(Yi) where f 18 a mea~
surable function s.t. f(Yl) has m.g.f. in a neighborhood of zero, and

>
infueA V11 0 where

V= VCEE))) + 2 g eov(E (YD, £(Y),0)

Then

supueAln—l log P(n~} Le1n £ - E £ 260 + (ez/zvu)l =0, +0, -
This claim is verified by checking that all the estimates in the proof
of Theorem 2, when adopted for fu(Yi)’ are uniform in Y € A under the
conditions assumed above.
The next theorem is a multivariate extension of Theorem 2. A corol-
lary of this theorem has been applied in the next section in connection
with the Anderson-Darling statistic.

Theorem 4. Let {Zi} - {Yil’ vers Yiq} be a stationary sequence of

q-variate, m-dependent random vectors. We assume that L = {cij}qxq where

Ogg = covllyys Nyg) + By gy Ceovllyys Yy ) + vy gs YD ;

is positive definite. For a bounded convex set C € Rq, with the null

vector as an interfor point, let I 6= inf{hz(g)lgﬂg', vhere a is any

c

ppre e
i

I R T I AR L
i
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nonnull vector and a *x = h(a) 1s a supporting hyperplane of C}. Then

-1 -1 c 2
n" log Pn” L, (¥, - E(¥) € g €)= (T IDQ +0_+0 I/2

where C° 1is the complement of the set C,

The proof we have in mind is based on the ideas of Theorem 9 of Rubin
and Sethuraman (1965). It turns out that, given our Theorems 2 and 3,

esgsentially the same steps go through.

Corollary 3.1. In the special case C = {x: xAx' <1} where A is

some positive definite matrix, (IC)-]' = (AL), = the largest eigenvalue of

the matrix AI. Thus, if E Y.

1=0>

-'1 '~ Py ) 2 2
" log PE, AY) 2 €) = -(e*/2AD,) (1 + 0, + 0 )
-
vhere ¥ =n X:l-l,n Y,. Specializing further,

2! 1og P > €)= -(nEZ/Z(Z)*) (L+o +o0 .

The last theorem of this section is about trimmed L-statistics. The
idea of Bahadur-Kiefer representation of quantiles is exploited in the

proof. Let Fn(') and F;l(') denote the right continuous versions of
empirical and quantile processes of (Yl, Yys oees Yn).

Theorem 5. Let F be the d.f. of Yl and W be some function of

bounded variation on [a,B], 0 <a < B <1. We define

8 -1 : 8 -1
Ln = I F ~(t) daw(t) , L= I F “(t) dw(t) ,
a M a

and assume that F"(x) exists V x € (F'l(a-é), F'1(6+6)), for a 6§ > 0;
0 < ey 2 F'(x) > cg >0 and [P (x) | < cg throughout the interval. If

PEN) = £y, g, = (e - 1, <FHENVE, u = B aue) ama




2
0 <op = V(u) +2 Jiy py coviluy, upy) s

then

-1 I I
n"" log P(L ~L > €) = ~(n€"/0])(1 + O + on’e)/Z .

The proofs of this theorem and the theorems in the next section use
an exponential bound which we present as

Lemma 3.1. Let {Xi} be a stationary sequence of m-dependent,
bounded r.v.'s with mean zero and v(xl) + 2 Zi-l,m-l cov(Yl, Y1+1
For positive numbers D, Z satisfying Z <D and ZnB iDz, there exist

) <B <1,

positive constants c,, and c,,, depending upon m and uxluo only,

s.t’
(], X, | >2¢c,n D) <c,, €2
=1,n X4l 2269 D) Z¢yy .

Proof. We write Zi-l,n X, = Zi-l,k (€ +ny) + &, Just as in the

proof of Theorem 2, replacing Yi by x1 and taking p=m,

P(fim1, k1 &1 2C10 D) Sexp(—9 2) E exp(z”™" Ye1, i1 &9
<c (~can Z)(E exp(zDt £
<3 expl-cyy exp 5

-2
<cy exp(-c10 Z + k log(l + 1o ZZD B)) _f_cn exp(-Z)

2

for ¢ large enough, since ZnB <D” and V(El) < 2Bm. -Zi-l K+l E:l
9

10
and + Xi-l,k n, are treated similarly to get the bound.

Proof of Theorem 5. With Bahadur-Kiefer representation of quantiles

in mind, we write

L-L= 2t

Zi.-l,n Uy + R(n) . .




Under the assumed regularity conditions about F, if En( *) and E;l(°)
3 denote the right continuous versions of empirical and quantile processes

{ of Ui = F(xi), i=1, ..., n, then
|R(n)| iclz auptG[G,B] IF;I(t) - F-l(t) + (Fn(F-l(t)) - t)f:ll
= e1p Mpere g [FHEHD) - FHEO + (7 (FH(®) - 0

t

-1 -1 2
S¢13 P4 ) Ilzn (6) -t + B (t) - t| + €14 (89P e[ g) Il;u (t) - tP*.

£ The theorem is established by showing that the two statistics in the r.h.s.
above are (*). This is done by the method of subdivision, applying Lemma
3.1 for probability bounds. The details are long but seem to be quite

\) standard ones and so are omitted. Babu and Singh (1978) may be found helpful

in verifying the claims.

4. GOODNESS OF FIT STATISTICS

?( Throughout this section {11} denotes a stationary sequence of q-
| variate, m-dependent random vectors with the underlying d.f. F having

continuous marginals. We discuss in this section LDP for multivariate

versions of two goodness of fit statistics -~ Kolmogorov-Smirnov statistics

and Anderson-Darling statistics, defined as

ks = sup{|E (@) - P@|; x € R}

. A,

w? - GRS CHgLOR
R

vhere F_ denotes e.d.f. {_\:1} and h 1s some bounded continuous function

on RI. We assume further that marginal distributions are U(0,1], which of

R
AT gt e - e




itk e e a3t I VA4

O i

Panc o, Wims S5, v

course can be achieved by suitable transformation. This assumption reduces
all our considerations to [O,I]q. We denote this set by J hereafter.
Theorem 6. If TI(°+,°*) denotes the covariance kernel on JXJ defined

+ cov(I(Y, <¢), I(!;+1 <8)) ,
and T, = sup{l'(t, t); t € J} >0, then

! log B(RS_ > €) = -(/2T)(L + 0 + 0 .

Proof. For a set S, let Ca(S) denote its cardinality. Givem € > O,

we define

B_. = {o, ez, 252, coes [e‘zlez, 1},

B, = {x:x¢€ B, and TI(x, x) > (3c10)"2 r,}

A I P T R Tugr gt )

and

4
e |
[

max{l(t, t); t € B:}

where <10 is the constant appearing in Lemma 3.1, corresponding to

-
I
2
2
¥

* *h
% lo = 1. Thue B_=B_ uB_ . Because of the uniform continuity of the

*
function T(x, x) 1in x € J and the condition T, > 0, the set B_ is
nonempty for € sufficiently small and I‘e* =T, + Oe.

! Given x € J, there exists an element t = (tl, tz, cees tq) of Be

which belongs to the set ]

2
ﬂj-l,q[tj' (t:J +€)aAll.

B o R g

13
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This, together with the assumption that marginals are U[0,l], makes sure

that
[B@ - ()| <qe’ and [P - FE"| < qe?

where t' = ((tl + 82) Al, ...y (t:q + €2) A 1). As a consequence of this

and the monotone property of gn,
2
lsup, 5 [E,®) - o) - max_t_enelzn(g) -F@®) || <q€” ;
therefore

lF @ - ¥ 2€) <P&S >¢€)

= P(mgeng |, (0 -F@©] 2 ¢ - )
+ P(WEGB;* lzn(s) - -E(E)I 3 en - q€2) .

We now estimate the probabilities appearing in (4.1) to arrive at the
desired theorem.

By an appeal to Theorem 3,

4.2)  Pmax g [E® - E@©] > ¢ - o))

— €

< ca(B) max{P(|E (0) - F(O| > € - qc?); t € By}
< ca(sh) exp(-ne?(1 + 0_+0_ /2l )

< ca(By) exp(-ne’(1 + 0_+0_ )/2r,) .

* *®
If t° denotes a member of B_ which maximizes I(¢,*) over B_, then

2, - B@®] 2 ) > PUE 7)) - 2ED)| > €)

—

4.3) P(mteBz

= exp(-ne’(1 + 0_ + 0 )/21(°, £°)) = exp(-ne?(L + 0_+ 0 )/2T,).

14
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;} Finally, the rightmost term of (4.1) is estimated using Lemma 3.1. Lemma
3.1 with D = n((»:n - qez)/cho, Z= n€2/ [, and B = (3c10)n2 I, implies

Y 9

i (4.4) P(maxies?. |E,(® - E®)] > ¢ -geD)

;i *k 2 *%k

i <ca(s_) max{P(|E (t) - F(®)| > g -ae); t e B}

ﬁ ,

b - -ne“(L+0_+0 r

3 exp (-ne“ '( e n,s)/ )

1 for all € small. The theorem now follows from (4.1) - (4.4).

A To get similar LDP bound for ADn, we need to develop some notation

H

, first. For a function g defined on J, let ||gf, = J, 32(_:5) dg))llz. If

; £ is a finite dimensional vector, ||£|| denotes its Euclidean norm. Also,

<

% we define

2

% [Tn], = sup{"f T'(s, t) h(s) h(t) g(s) dgﬂz; g 1is a continuous function

: J

g on J with "8"2 =1,

K

4

¥ {P°h}€ = {I'(s, t) h(s) h(g)}g)sgns » @ matrix of order Car(B) X Car(s) ,

[Ten], = (Car(Be))-l sup{[[{T*h}_ - 2| , where % 4is a vector of dimension

Car(B.) with (%] =1} .

It is verified through the standard approximation of integrals with finite
sum that [Teh]_, = [T*h], +O_.

Theorem 7. If ([I*h], > 0, then
2l 1og P(AD. > € ) = —(ne?/2[T*h],)(1 + O_+0_ )
g n— n * € n,e’ °

Proof. Approximation of Ani by an average over the set Be implies

15

4

‘

i
! g
)

1

+

i




e N AT i oS . e e

2 -1 2.2
|aD - (car(s)) (F (8) - F(e)” n(v)|

DL il M lr, i At i T it

)
t€B_
< sup{|(F () - F)* W(e) - (E ® - Fe»? K ©®];

2

3 |s-t| <€, s, teJ}
< {|F_(s) ) ~F ( +F()|+Ih2 b2 ( F
1 > clz sup Zn 8) - E.(g - = E) 2 _t. (_B_) - E) ’

lstl<é, 5, ten

where |s-t| < ¢? neans that the differences between corresponding coordi-

nates are < 82. An application of Corollary 3.1 shows

n™ log B((Car(s))™" E ® - Fe)’ K©) 2 )

t€B
= —@??/2(rn)_)@ +0_+0 ) = -(me?/2[T+h])(L +0_+0_ ) .
E* € n,€ * € n,e
Because h 1is a continuous function on the compact set J,

sup{[b2(s) - B2(®) |5 5, t € 3, [s-t| < €’} = 0 .

Hence it only remains to be seen that the remainder

©) +E®]; 5 t €3, lst] <€)

(4.5) 43 sup{lgn(g) - F(s) - E (& =

is (#). This is done using Bonferroni inequality and Lemma 3.1. If

i£-£| f. 52’

(4.6) V(I(Y; <8) - I(Y, <)) +2 ] cov(I(Y, <8 - I(Y; < 1),

i=1 m-1
2
I(¥,,, 28 - I(Xy,y 28 < 2mqe” . y

The dependence of (4.6) on ez is exploited through Lemma 3.1 to prove

————_ e

that (4.5) is (*).
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